Individualized margins for prostate patients using a wireless localization and tracking system

نویسندگان

  • Prema Rassiah‐Szegedi
  • Brian Wang
  • Martin Szegedi
  • Jonathan Tward
  • Hui Zhao
  • Y. Jessica Huang
  • Vikren Sarkar
  • Dennis Shrieve
  • Bill Salter
چکیده

This study investigates the dosimetric benefits of designing patient-specific margins for prostate cancer patients based on 4D localization and tracking. Ten prostate patients, each implanted with three radiofrequency transponders, were localized and tracked for 40 fractions. "Conventional margin" (CM) planning target volumes (PTV) and PTVs resulting from uniform margins of 5 mm (5M) and 7 mm (7M) were explored. Through retrospective review of each patient's tracking data, an individualized margin (IM) design for each patient was determined. IMRT treatment plans with identical constraints were generated for all four margin strategies and compared. The IM plans generally created the smallest PTV volumes. For similar PTV coverage, the IM plans had a lower mean bladder (rectal) dose by an average of 3.9% (2.5%), 8.5% (5.7%) and 16.2 % (9.8%) compared to 5M, 7M and CM plans, respectively. The IM plan had the lowest gEUD value of 23.8 Gy for bladder, compared to 35.1, 28.4 and 25.7, for CM, 7M and 5M, respectively. Likewise, the IM plan had the lowest NTCP value for rectum of 0.04, compared to 0.07, 0.06 and 0.05 for CM, 7M and 5M, respectively. Individualized margins can lead to significantly reduced PTV volumes and critical structure doses, while still ensuring a minimum delivered CTV dose equal to 95% of the prescribed dose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-hop PSO based localization algorithm for wireless sensor networks

A sensor network consists of a large number of sensor nodes that are distributed in a large geographic environment to collect data. Localization is one of the key issues in wireless sensor network researches because it is important to determine the location of an event. On the other side, finding the location of a wireless sensor node by the Global Positioning System (GPS) is not appropriate du...

متن کامل

Practical method of adaptive radiotherapy for prostate cancer using real-time electromagnetic tracking.

PURPOSE We have created an automated process using real-time tracking data to evaluate the adequacy of planning target volume (PTV) margins in prostate cancer, allowing a process of adaptive radiotherapy with minimal physician workload. We present an analysis of PTV adequacy and a proposed adaptive process. METHODS AND MATERIALS Tracking data were analyzed for 15 patients who underwent step-a...

متن کامل

A Rssi Based Localization Algorithm for WSN Using a Mobile Anchor Node

Wireless sensor networks attracting a great deal of research interest. Accurate localization of sensor nodes is a strong requirement in a wide area of applications. In recent years, several techniques have been proposed for localization in wireless sensor networks. In this paper we present a localization scheme with using only one mobile anchor station and received signal strength indicator tec...

متن کامل

A Real-time Motion Tracking Wireless System for Upper Limb Exosuit Based on Inertial Measurement Units and Flex Sensors (TECHNICAL NOTE)

This paper puts forward a real-time angular tracking (motion capture) system for a low cost upper limb exosuit based on sensor fusion; which is integrated by an elastic sleeve-mitten, two inertial measurement units (IMU), two flex sensors and a wireless communication system. The device can accurately detect the angular position of the shoulder (flexion-extension, abduction-adduction and interna...

متن کامل

Prostate Helical Tomotherapy: A semi-empirical estimation of the scaling factor based on 2D approximating field

Background: In Helical Tomotherapy (HT), the scaling factor (SF) is the time in seconds that each leaf viewing a target would need to be open to deliver the prescribed dose. The SF is patient-specific and is used to calculate the rotational period of the gantry, and the total treatment time (TTT) of the HT. The SF is generally difficult to estimate. Currently, it takes about one hour t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2011